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ABSTRACT  
In this paper, we apply principles of Bayesian representations of radar environments to several applications 
including adaptive beamsteering for wide-area surveillance, cognitive radar networks, and adaptive parameter 
selection for track-before-detect modes. The goal of the Bayesian representations is to enable information-based 
metrics on which to optimize radar illumination parameters, thereby improving performance and enabling 
efficient use of finite radar resources. We describe how these applications can be cast in the new framework, 
updated as data are collected, and used to optimize search and waveform parameters. 

1.0 INTRODUCTION 

As described in another lecture series paper titled “Bayesian Representations and Information Metrics for 
Cognitive Radar,” [1] traditional systems do not often make efficient use of the constrained resources at their 
disposal. Radar systems, and other sensors, often collect data that is irrelevant or non-informative for a particular 
task because sensor design and data collection are defined in a rigid way that prioritizes data collection, not 
necessarily information collection. However, this approach means that sensing resources are applied toward the 
collection of non-informative data. Because sensing resources such as transmit power, radar timeline, and data 
bandwidth are finite, we should instead be considering how to develop sensors capable of adjusting their 
measurements to maximize performance. 

This behaviour is the essence of cognitive radar. In order to improvement performance, we wish to adapt 
transmitter properties such as transmit beam direction, waveform shape, and pulse repetition frequency in real 
time such that the radar is effectively used at all times. For example, if waveform spectra can be adaptively 
shaped to maximize target discrimination capability, then discrimination can be performed with reduced power 
and/or timeline, thereby freeing the radar to perform additional tasks. On the other hand, the radar system must 
have a metric on which to adapt, and this metric must have a dependence on the radar transmit parameters. The 
metric should be impacted by the propagation environment in which the radar operates, and this environment 
should be evolving as data are collected in order to continue informing the adaptive transmitter. 

Using a metric on which to adapt, combined with a forward sensing model that predicts this metric for specific 
selections of transmit parameters, we can arrive at optimization schemes that begin to produce cognitive-like 
behaviour in radar systems. The behaviour is cognitive in the sense that knowledge of the radar sensing task(s) 
and propagation environment are updated as data are collected in order for an adaptive transmitter to optimize to 
the current state of affairs. When little prior knowledge is available, the adaptive transmitter typically emits a 
standard, general-purpose waveform. When strong prior knowledge is available, or when the environment 
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characteristics have been learned on previous transmissions, the adaptive transmitter can fine tune a waveform to 
achieve exploitation tasks more rapidly or with reduced power.  

The development and updating of such representations is difficult and requires significant computational power. 
In this paper, we describe progress with applying our philosophy to different applications. First, we represent a 
three-dimensional target parameters space as a volume of resolution cells, each assigned a probability of target 
presence. We then select the beamsteering parameters such that the radar illumination falls on the region of 
target parameter space where there is the most to be learned. We also describe how detection and tracking 
functions can be integrated into a single framework, thereby automating the scheduling of search dwells and 
tracking dwells according to the radar system’s most pressing need. Next, we expand this approach to include 
two radar systems observing a target area from different locations and describe how the probability space can be 
updated using the data from each individual radar system. Finally, we describe some of the difficulties of this 
gridded-probability-space approach, and describe an alternative approach using principles from the literature on 
track-before-detect methods. We demonstrate this approach through adaptive selection of the pulse repetition 
frequency (PRF) in order to avoid clutter zones and blind zones, which maximizes the information content of a 
particular coherent processing interval (CPI).  

After describing these applications and providing some simulated performance comparisons, we make some 
comments regarding application of these principles to cognitive multi-platform space-time adaptive processing. 

2.0 ADAPTIVE BEAMSTEERING FOR WIDE-AREA SURVEILLANCE 

The goal of our adaptive beamsteering application is to use information-based metrics to steer the radar beam in 
an efficient way, which implies steering the beam toward an area where the most information is expected to be 
gained. We will divide the target parameter space (e.g., angle, range, Doppler, …) into a volume of resolution 
cells, with each cell containing a probability of target presence. When this probability is 0.5, then there is 
significant uncertainty that merits a look from the radar. When the probability is near 0.0 or 1.0, then there is 
little uncertainty, and a look from the radar is not merited. Of course, in general the radar beam will illuminate 
many such cells, such that we accumulate the expected information gained over all illuminated cells for a given 
beam position. The beam position that has the highest expected SNR gain is the one that will be used for the next 
illumination. Although in this section of the paper we ignore ground clutter, the expected information gain from 
a particular target parameter cell will depend on whether we also expect clutter to be present in that cell, which 
impacts the signal-to-interference ratio. In this section, we will describe the geometry used to demonstrate the 
operational principles, describe the calculations for determining the best beam position, and present some 
simulated results that demonstrate the improved performance of adaptive beamsteering over a conventional 
raster scan. 

2.1 Geometry 
We consider a two-dimensional array looking down at a target surface as depicted in Figure 1. The array 
elements are located in the x-y plane, which is oriented such that the array normal is looking down at an angle 
onto the target surface. A cross-section view of the geometry is available in the right panel of Figure 1. From the 
cross-section view, we can see that the target’s ky location on the surface produces a different angle of incidence 
with respect to the array’s y-axis; hence, it changes the signal’s spatial frequency with respect to the array’s y-
dimension (which is why it has been labelled ky). The target’s location in the orthogonal direction on the surface 
corresponds to a change in the signal’s spatial frequency with respect to the array’s x-dimension, so it has been 
labelled as kx. For simplification, we assume a far-field, sidelooking type of geometry such that we can assume 
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that the kx and ky components are essentially orthogonal over the field of view. We can also see that if the target 
has velocity component in the kx dimension, that this produces no radial velocity and no Doppler shift. Target 
motion in the ky dimension, however, does produce a radial component that depends on the actual elevation 
angle. To continue keeping things general and simple, we equate the geometry-dependent relationship between 
Doppler shift and the rate of change in ky through a constant factor, −β. The value of this factor isn’t relevant for 
our current purposes. And finally, although the geometry clearly implies a look-down scenario onto a ground 
surface, we ignore clutter for the time being in order to focus on probability updates and beamsteering 
calculations. 

 

Figure 1: Geometry for developing and demonstrating adaptive beamsteering principles. 

As the array steers its illumination beam around the surface of interest, we can characterize its illumination in 
terms of the axes kx and ky via the notation ( ),x yS k k . We use this notation because it makes a connection with 
the literature on matched illumination [2-4], where the temporal spectrum of a waveform is designed to enhance 
SNR, discrimination ability, and/or mutual information. In general, one could consider designing an arbitrary 
illumination pattern ( ),x yS k k  that maximizes information, similar in concept to optimizing a temporal 
waveform. Here, we assume a standard illumination pattern over a fixed and contiguous region of cells. Given a 
particular illumination pattern and a target with parameters as in the geometry above, the target will produce a 
signal at the array according to 

 ( ) ( ) ( ), , , expx y x y Dr x y t S k k j k x k y tα ω = − + +  .  (1) 

where α wraps up all amplitude terms related to the radar equation and target RCS. 

2.2 Scene Representation 
Now that (1) describes the signal received due to a target in the scene, we must develop a method to represent 
potential targets in the scene. In other words, we require some way of representing what we believe to be true 
about the scene, such that we can optimize the illumination direction for maximum benefit. However, 
developing this representation poses a serious challenge. The target parameter space is continuous, and the 
number of targets in the scene is unknown. Therefore, there are an infinite number of possible channel 
realizations to represent and discriminate between, which is computationally impractical. 

As a potential solution, we choose to divide the target parameter space into cells as shown in Figure 2. Each cell 
in the target parameter space receives a probability of target presence, and this probability is updated whenever a 
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measurement is taken. There is still a binary hypothesis inference problem with a maximum of 1 bit of 
uncertainty in each cell, but now there are many cells. This discretized parameter space still results in a huge 
number of possible channel realizations, but if the parameter cells are resolvable by the radar system, then they 
can be updated independently of one another. For cells that are unresolved or ambiguous (e.g., due to Doppler 
aliasing), then special care is needed, which is described in the next section in the context of radar networks. 

 
Figure 2: Discretized representation of the target parameter space.  

Each cell contains a probability of target presence. 

In summary, each cell in the target parameter space has a probability associated with it. The radar system will 
illuminate a subset of cells localized in the (kx, ky) dimensions, but there is no ability to illuminate only a subset 
of Doppler bins. For those cells that are illuminated, likelihood calculations and Bayes’ theorem will be used to 
update the cell probabilities based on an assumed model. For cells that aren’t illuminated, the probabilities will 
be updated based on an assumed dynamic model.  

The next issue concerns how to convert this volume of probabilities into a beamsteering decision. The 
probability volume is three-dimensional, but the beampattern is two-dimensional, so we must reduce dimensions 
from the parameter space to the optimization metric. Treating the decision in each cell as independent, our 
approach will be to accumulate the uncertainty over Doppler to obtain an entropy metric for each (kx, ky) cell, and 
then to select the beam position that covers the most entropy. Let the probability of target presence in the ith 
Doppler bin at the spatial coordinates (kx, ky) be denoted as ( ); ,x yP i k k  and the signal amplitude in the ith 
Doppler bin as iα , our entropy calculation for the ith bin is 

 ( ) ( )2 ; , 1 ; ,i x y x yP i k k P i k kα  −    (2) 

and the accumulated entropy over all Doppler bins at a particular (kx, ky) location is 

 ( ) ( ) ( )22

1
, ; , 1 ; ,

DN

H x y i x y x y
i

k k P i k k P i k kσ α
=

 = − ∑ .  (3) 

The metric in (2) is based on calculating the variance of the signal strength over the two hypotheses – signal 
present and signal absent. We arrive at a variance that is maximized when the target probability is 0.5, and 
minimized when the probability is 0.0 or 1.0. This behaviour is similar to the behaviour for a binary random 
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variable, but the equation is different. Instead of computing entropy directly, we compute signal variance, which 
not only depends on the target-present probability, but also on the expected strength of the signal if it is present. 
For a Gaussian random variable, entropy is directly related to its variance, and the mutual information extracted 
from a noisy observation of the variable is related to ( )log 1 SNR+  where SNR is the ratio of the variable’s 
variance to the noise power in the observation. If we desired to factor clutter into the calculation, we could place 
the noise+clutter power expected in a particular cell as the denominator in the SNR, and the variance in (2) as the 
numerator. Thus, the information extracted from any given cell would depend on the signal strength (through α), 
the target present probability (through the dependence of (2) on target probability), and the noise+clutter power. 
We will explicitly factor in clutter when we consider adaptive PRF selection later in the paper, but for now we 
assume that the interference in every cell is due to noise and has the same power. We compute the variances in 
(2) and accumulate over all Doppler bins at a given spatial location to achieve the 2-D variance metric in (3). 
This variance is called the spectral variance [4] because it depends on spatial frequencies kx and ky. We then 
substitute this variance into the mutual information equation for a Gaussian random variable, and then choose 
the beam position that is expected to capture the most information.  

The description above describes how we select a beam position at a given instant in time. However, any scene of 
practical interest will be dynamic, such that targets can appear or disappear. Targets must be tracked, and areas 
that may have been previously “cleared” of targets must be periodically checked again. To implement these 
features, we institute a dynamic model for the target probabilities. First, this dynamic model allows for target 
probabilities to gradually converge back to a pre-defined steady state value if not updated by the radar system. 
This steady state value is the same target probability that is used prior to taking any measurements and should be 
related to the expected density of targets in the scene. Whenever a cell is not updated, the probability associated 
with the cell decays back to the steady-state value according to an exponential decay with a specified time 
constant. Areas in the search space can be assigned different time constants, such that some areas are deemed 
more dynamic and other areas less dynamic, reflecting prior knowledge of terrain types and high activity areas. 
In our simulations to be described shortly, we assumed that the spatial edges of the scene were more dynamic 
due to the possibility of targets entering or leaving the scene. 

For targets in the scene, the radar system might determine their location by finding a cell with high probability of 
target presence. Sometime later, however, the target will have moved and its position will be less certain. 
Therefore, we allow the probability to diverge in a Kalman-like expansion of the estimated target state. We take 
the variance of the target parameter estimate associated with a single cell and propagate it forward in a sequential 
Bayesian calculation, and then take the original cell probability and re-distribute it over the cells covered by the 
covariance of the state vector [5]. Ideally, we would do this for every cell in the parameter space, but due to 
computational reasons we only perform this probability propagation for cells that exceed a defined threshold. We 
are, in effect, making soft detection declarations in order to propagate forward the cells that are mostly likely to 
have targets. Every other cell is updated using the dynamic model described in the prior paragraph. 

2.3 Simulation 
We generated a simulation based on the principles above, and sample results are shown in Figure 3. In the 
simulation, we set up a grid of cells as described, and randomly generated targets with random parameters 
moving through the scene. At each iteration, we compute the spectral variance at every spatial location, which is 
shown in the right panel of each figure pair. Based on this spectral variance, the best beam location was selected 
and is shown in the left panel of each figure pair. 
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Figure 3: Spectral variance and beam locations for an adaptive search application. The results are shown 

after frame #40 (top left pair), frame #60 (top right); frame #90 (lower left), and frame #120 (lower right). 

The scenario after the 40th illumination is depicted in the top left pair of figures. The spectral variance plot 
shows that the radar has been searching the edges of the target space (because these areas are the most dynamic). 
The highest spectral areas, color-coded as red, are in the center of the scene and haven’t been searched yet. The 
most recently searched areas have the least uncertainty and are color-coded as dark blue. Areas that were 
searched several dwells ago have started to converge back to their steady-state uncertainty levels and now show 
up as light blue with maybe a hint of green. The true target location, seen as a black speck in the center left, has 
not yet been illuminated. Also note that the beam locations have been largely non-overlapping, since this would 
yield redundant information rather than maximum information. Because the beam shape is rounded, this has left 
gaps in the searched space that will need to be updated later.  

The scenario after the 60th illumination is shown in the top right. The target has been discovered and updated a 
couple times already, yielding dark blue (i.e., no uncertainty) in the search region around the target. More of the 
space has been searched, and some of the more stale locations have some hints of yellow emerging. After the 
90th illumination (lower left), the system is now filling in some of the gaps and periodically updating the scene 
edges while adaptively balancing against the needs for track updates. One can see that the beam position is about 
to update one of the larger areas of red remaining in the variance map. Finally, after 120 iterations, the situation 
shown at bottom right indicates a system actively searching the outer regions of the target space again and 
actively choosing the best location at any given time. We note that the time between track updates is not fixed, 
but rather is a function of the overall state of affairs at a given time, as quantified by the spectral variance metric. 
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Figure 4 shows additional results for the adaptive beamsteering scenario. We performed Monte Carlo simulation 
of many trials of the system, allowing targets to randomly pass through the scene. The left panel of Figure 4 
shows the detection probability performance for adaptive beamsteering compared to a static raster scene as a 
function of SNR (here, SNR is prior to processing integration gain, so the values are low). The adaptive scanning 
strategy clearly has better detection performance, especially at lower and mid-level SNR values. The right figure 
shows the accumulated energy placed on every spatial cell in the scene over a single trial of the simulation. We 
can see that the outer edges of the scene generally received more energy, and we can see three targets that were 
tracked through the scene.  

      
Figure 4: Detection performance (left) and sample energy distribution  

(right) for the adaptive beamsteering scheme. 

3.0 COGNITIVE RADAR NETWORK 

Based on the same principles as the adaptive beamsteering in Section 2, in this section we discuss the adaptive 
observation of a target space from multiple radar platforms. In such a scenario, the different platforms must 
jointly update the target space representation, but each in its own geometry-dependent way. For any particular 
radar platform, some target parameters will be observable by the platform and some will not. For example, in the 
scenario considered here, two radar platforms observe a scene from a relative 90-degree offset between the two, 
meaning that each radar can observe an orthogonal component of the target’s velocity. Many of the details for 
this application are presented in [6], so here we only emphasize some of the most important features. 

One of the major aspects of a radar network application is that different platforms observe the scene from 
different angles. Because range and Doppler shift are geometry dependent, this means that the target parameter 
space should no longer have range and/or Doppler has a parameter, but should instead be referenced to absolute 
positions and absolute velocities. Restricting targets to exist on a flat surface for our current application, this 
means that there are two position parameters and two velocity parameters, for a four-dimensional target 
representation space. However, each radar cannot uniquely observe the full four-dimensional space – some of 
the parameters in the space are unresolved, or ambiguous, to a radar platform. But the ambiguity is different for 
each platform. The platforms must cooperate to form a full picture of the target space, but updating the 
probabilities requires special attention to deal with unobserved target parameters. Our approach is to form joint 
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hypotheses for the different alternatives that could be true in the unobserved space, to update those joint 
hypotheses with data, and then to reduce back down to cell probabilities using marginal probability calculations. 
Details are given in [6-7]. 

Another salient difference in how we approached the cognitive radar network problem is in how we handled the 
built-in integration between search and track functions. In the previous examples, we allowed the probability 
within a cell to spread using sequential Bayesian updates, and then re-integrated the probability that fell within 
each target cell. Whenever this situation resulting in enough uncertainty, the system would automatically choose 
a beam position that enabled an update of that likely target. In the cognitive radar network, however, we instead 
chose to declare soft detections whenever a cell probability exceed a threshold. For any soft detections, we began 
tracking the target and directly used the entropy of the track’s error covariance matrix to determine when an 
updated was needed. Thus, we calculated two different metrics. The variance metric based on cell probabilities 
was called the beam position entropy (BPE) and was used to control the search function. The metric based on 
track error covariance was called target track entropy (TTE) and was used to control track updates. Because 
these are fundamentally different types of entropy – one deals with a discrete binary decision while the other 
deals with estimating a continuous variable – we chose to combine the two metrics through a scale factor. 
Therefore, our optimization metric had the form 

 BPE TTE+Ω ⋅   (4) 

where Ω is the combining constant. From (4), it is easy to see that the relative emphasis placed on search versus 
track tasks can be varied with the constant. If Ω = 0, then the target track entropy will not factor into the 
optimization metric and tracking will not be considered. If Ω is large, then tracking will be emphasized over 
finding new targets. Although we did not try this approach, it is also possible to use different constants for 
different targets in order to prioritize some targets over others. 

Figure 5 shows energy accumulation results for the exact same target scenario run with different values of Ω. In 
the top panel, we have Ω = 0, and the energy accumulation is consistent with a strict searching function with 
higher scene dynamics near the edges. In the middle panel, we have Ω = 1×1020 (which shows the dramatically 
different scales of the two entropy types), and a hint of a track is now discernable in the lower-right corner of the 
figure. The target was detected as it left the center of the scene and moved to the lower right. Although some 
energy is allocated to tracking this target, it is not as much as in the bottom panel, where Ω = 5×1020. In the 
bottom panel, the emphasis on the TTE measure is emphasized and a strong allocation of energy has been used 
to carefully track the target. 
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Figure 5: Accumulated energy applied to the target space as a function of the relative emphasis 

between searching for and tracking targets. This emphasis is varied through  
the variable Ω, which is used to connect the entropy metrics. 

4.0 TRACK-BEFORE-DETECT WITH ADAPTIVE PARAMETER SELECTION 

The two previous applications both relied on a gridded parameter space with probabilities assigned to each cell. 
However, through performing our tests we determined a couple drawbacks. First, when a strong target straddles 
two bins, the approach overestimates the uncertainty. For example, the radar might be very certain (probability 
near 1) that a target is present in a certain parameter cell. But a few dwells later, the target might be crossing the 
boundary between cells, at which point the 1 unit of probability will be split across two cells, Because each cell 
now has a probability of 0.5, each cell is deemed to be very uncertain and in need of update. In reality, the 
scenario is well determined and the inflated variance values are simply a function of the discretized parameter 
space. 

A second difficulty is in the extension to radar networks with arbitrary observation geometries. In the cognitive 
network application above, we conveniently chose the two platforms to be 90 degrees apart, which allowed us to 
align the target parameters measured by each platform with the orientation of the gridded probability space. For 
platforms that do not have such convenient spacing, or that move around the scene such that their perspective 
changes, the gridded approach will be very inconvenient. While it is possible to arrive at ad hoc solutions for 
these difficulties, we desired to find a solution that was not confined to a fixed probability grid, and decided to 
try an approach based on track-before-detect algorithms. 

Track-before-detect (TkBD) methods [8-10] are consistent with our philosophy of cognitive radar because they 
explicitly intend to carry over information from one illumination to another. Whereas decisions based on a single 
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dwell would miss many weak targets, TkBD methods track the detection metrics on a potential target over time, 
thereby checking for consistency over time. Many TkBD methods are based on numerical pdf representations 
such as particle filters; therefore, this approach enables continuous parameter values and is consistent with our 
desire to break away from discretized representations. Particle-based TkBD methods use clusters of particles 
around the estimated target state to numerical represent the state vector’s pdf. From this numerical 
representation, the estimated state vector and error variances can be computed. 

TkBD methods are available in the literature, meaning we did not have to develop the techniques from scratch. 
However, most of the methods are designed for a single target or for only two or three targets. Because we wish 
to apply the method to scenes with an unknown number of targets, we had to modify existing methods to handle 
a variable number of targets. 

4.1 Particle-Based Representation 
Here, we apply TkBD methods to the detection and tracking of targets over a wide range and Doppler space. The 
span of the range and Doppler space of interest precludes the absence of range and Doppler ambiguities; 
therefore, our observations will have blind zones (due to being blind during transmission of a pulse), mainlobe 
clutter zones, as well as range and Doppler aliases of these zones. An adaptive PRF selection scheme should 
enable optimum PRF selection such that potential target clusters do not fall into blind zones, mainlobe clutter, or 
onto each other. 

We avoid going through all of the particle filtering steps here. Again, many of the details are covered in [11]. For 
now, we point out that a significant modification we made to the particle-based TkBD algorithm was to estimate 
the expected number of targets in the scene based on the number of clusters and their assigned probabilities of 
being a true target. This expected number of targets was then used to vary proportionately the number of 
particles used in the scene. This variability is important because it prevents strong targets from usurping all the 
particles from other weaker targets. 

Every time data is collected and a range-Doppler map is formed, the strongest cells in the RD map are identified. 
Each strong cell is either associated with an existing cluster of particles (which may require checking for 
association through range and Doppler ambiguities) or used to generate a new cluster of particles. Each cluster 
has a number of particles with locations and weights that can be used to compute the potential target’s parameter 
state. Each cluster also has a binary existence variable (similar to the detection source variable described in [1]), 
and a “probability of existence” (the probability that the cluster represents a true target). There are several steps 
to perform in the process of associating range-Doppler peaks with clusters, updating the clusters and probability 
of existence, resampling the scene, and so on. Although these take much effort to develop and set up, we do not 
cover the details here as they are part of the existing TkBD literature. 

4.2 Adaptive PRF Selection Procedure 
For the adaptive parameter selection, we wish to choose the waveform PRF that minimizes the expected entropy 
after data collection and processing. Thus, we must predict the expected posterior target probability in both cases 
– target present and target absent. If the target is present, we desire the probability to converge toward 1. If the 
target is absent, we desire the probability to converge toward 0. If the estimated target state falls into a blind 
zone, clutter region, or on top of another cluster, these situations will negatively impact the system’s ability to 
drive these probabilities to a decision.  
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Figure 6: Predicted probability transition diagram. 

We developed predicted probability transitions for several scenarios. First, if the target falls into a blind zone (or 
range ambiguity of a blind zone), then the target is not observed and the target’s probability of existence is left 
unchanged. There is no change in entropy, and no information is gained. Second, if the target does not fall into a 
blind zone and does not alias with another cluster, then we can predict the expected SNR and, hence, the 
predicted posterior probability. This posterior probability depends on both SNR, and on the probability of target 
presence prior to the current measurement. To accommodate these situations, we built two tables based on 
numerical simulation. The first table lists the predicted posterior probability versus SNR and the prior probability 
if the target is truly present. We simulated many detection statistics for the target-present case at each SNR, and 
numerically estimated the average resulting posterior probability, which goes into the table. We also did the 
same for the target-absent case by simulating many detection statistics with the target absent. Let the probability 
of existence for the jth cluster prior to the current measurement be denoted as 1

j
kP −  , the expected posterior 

probability if the target is present be j
kP , and the expected posterior probability if the target is absent be ˆ j

kP . 
Then the expected posterior entropies are 

 ( ) ( )0 2 2
ˆ ˆ ˆ ˆ ˆlog 1 log 1j j j j

k k k kh P P P P= − − − −   

if the target is absent, and  

 ( ) ( )1 2 2log 1 log 1j j j j
k k k kh P P P P= − − − −       

if the target is present. Finally, the predicted entropy metric is the weighted average of these two entropy 
calculations, where the weights are the prior probabilities that they are true, such that 

 ( )1 0 1 1
ˆ1 j j

k kh P h P h− −= − +  .  (5) 

For every PRF within the radar system’s capability, the metric in (5) is computed for every cluster of particles. 
The PRF that produces the lowest expected posterior entropy is selected for the next data collection. 

Finally, we note that if multiple clusters will overlap for a particular PRF, then this ambiguity must be accounted 
for. We do so in the same way that we handled unobserved or ambiguous parameters in the cognitive radar 
network example, whereby we expand the set of joint hypotheses, and predict their expected posterior 
probabilities and expected posterior entropy. For example, suppose that two clusters will overlap for a particular 
PRF. There are four possibilities:  
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1. Neither cluster is a target 
2. Only the 1st cluster is a target 
3. Only the 2nd cluster is a target 
4. Both clusters are targets. 

The prior probabilities for each of these joint cases can be obtained from the prior existence probabilities of each 
cluster. As we did for the non-ambiguous case, we build a lookup table prior to simulation that can be used to 
lookup the expected probability transitions, but in this case the table is for the joint hypotheses. And then we use 
the prior probabilities for each joint hypothesis, and the expected probability transitions for each joint 
hypothesis, to compute the weighted average entropy. 

4.3 Simulations 
We developed a simulation to adaptive select between seven different PRFs. The range-Doppler space had 500 
Doppler bins and 5000 range bins, and no PRF allowed for unambiguous observation of the entire space. Many 
trials of the simulated system were performed, with several targets randomly generated in the scene for each 
trials. We evaluated performance in two different ways. In the first method, we generated four random targets 
per trial, and let the simulation iterate until the probability of existence for all four true target clusters reached 0.9 
and all other clusters had a probability below 0.9. In this case, if we were to apply 0.9 as the detection threshold, 
all targets would be detected and no false alarms would occur. The number if iterations required to reach this 
state is random, and therefore differed on each trial. We averaged the number if iterations required to converge 
as a function of target SNR (after processing gain). These results are shown in Figure 7, where we see that the 
adaptive PRF method requires significantly fewer iterations to converge to accurate decisions than an approach 
that simply cycles through the available PRFs. Figure 8 shows performance for simulations fixed at 60 iterations. 
After the final iteration, any cluster above a detection threshold was declared a target, and the number of true 
detections and the number of false alarms were counted. On the left panel, we show ROC comparisons 
between adaptive and cyclical PRF selection. Obviously, the ROC improves for stronger targets, but the adaptive 
PRF selection performs better than cyclical PRF selection at all SNRs. The improvement is most significant at 
the lower and mid-level SNR values. At the highest SNR value of 8.5 dB, the TkBD approach has performed 
well enough to detection most targets using either PRF selection scheme. For comparison, the right panel shows 
ROC performance for single-shot detection. That is, detection with no carryover of information from CPI to CPI. 
To produce the right panel, we applied a threshold to each individual CPI, and if the target was detected on any 
of the CPIs, it was deemed a detection for that simulation. Comparison of the two figures clearly shows the 
major benefit of TkBD methods, and then the additional benefit of optimizing the measurements to push the 
TkBD method to faster decisions. 
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Figure 7: Average number of CPIs necessary to converge to full target detection with  
no false alarms. Comparison of adaptive PRF selection to cyclical PRF selection. 

 

Figure 8: ROC performance curves for adaptive versus cyclical PRF selection. 

5.0 CONCLUSIONS 

We plan to pursue these methods further in future work. In particular, several of the elements can be combined 
to produce a ground-moving target indicator (GMTI) scenario for radar systems performing space-time adaptive 
processing (STAP). Multiple platforms can perform their STAP processing and use the results to update particle-
filter-based TkBD algorithms. Thus, we plan to incorporate clutter, continuous parameter spaces, and realistic 
air-to-ground geometries into a cognitive GMTI network. The GMTI network application will be interesting 
because targets have the potential to fall into the mainlobe clutter ridge for some platforms, but not others, 
depending on geometry. Therefore, adaptively selecting the right platform with the right waveform parameters to 
update and search for targets will be an interesting optimization problem. 
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For now, we believe that the basic examples shown here demonstrate the potential benefit of cognitive radar 
systems operating on probabilistic representations of the desired target space. The representation of continuous 
target parameter spaces, and the infinite number of possible permutations of target presence, pose a real 
difficulty that must be handled in some way. To date, we have handled this through a probability grid approach 
and through a cluster-based TkBD approach. Both approaches have yielded nice results, though more efficient 
and better methods can surely be developed in the future. Continued development of efficient representations 
that can be updated as new data arrive will be key enablers for the future of cognitive radar. 
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